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T.1, POGQSIAN and M.P. REV 

Domains of feasible motions - projections of integral manifolds ontoaconfiguration 
space - are studied, It is shown that in systems with symmetry and in Liouville 
systems the reorganization wf such domains is possible only simultaneously with the 
reorganization of the integral manifolds. An example is presented of a system with 
gyroscopic forces, in which the domains of feasible motions change topological type 
outside a bifurcatiwn set. 

3., Let Qz, . . -, q,, be generalized coordinates and ql, . . .,q,’ be generalized velocities of 
a mechanical system defined by the Lagrange function 

if.31 

A curve Q f% . - -, (In @)f satisfying the Lagrange equation 

Il.21 

is called a motion in the system being studied, while the coxrespcnding curve (91 f$. - -14~(t), 
dq, <t) f dt, f . ., dp,(t) I&) in the phase space (q,q’) is called a phase trajectory. Let Hq.(l.2) 
have the first integrals 

& (crl% * * *1 Qw P<, . . . . fJn’)=&{a=% ,..., m) (1.31 

The subset cut out in the phase space by relations f1.3f is called an integral manifold, Me 
denote it r,,. . . ..s.s An integral manifold consists wholly af phase trajectories, 

The study of a system's phase trajectories is connected closely with the classification 
af the integral manifolds. In its own turn the latter is based on the study of a bifurcation 
set 8, viz., a set of points in the space of constants of integrals f1.31, upon passing 
through which the topological type of the integral manifolds is changed /I/. If set Z: has 
been found and if the topological or differentiable type of the corresponding integral mani- 
fold has been indicated for each connected component Rm \ X, than we say that the prwblem's 
phase topology has been investigated. However, knowledge of the types of the phase trajector- 
ies does not always yield an idea of the real behavior of the system under examination. In 
connection with this it becomes important to study how the mwtiwns, i.e., the projections of 
the phase trajectories onto the configuration space, are cwnstructed. It is evident that for 
prescribed &,, . . ,, km the corresponding motions pass through those and only those points I&.. 

.,q,J at which equality Il.3) is solvable relative to q;, . . ..qn’. We denote the set of such 
points by J%~,....,Q and we call it the gomain of feasible _motions (DFM). It is clear that the 
DFM is a projection of integral manifold b,....k, onto the configuration space. For a specif- 
ied point of the DFM the vector (&*,. I .,qS*fI namely, a solution of (1.33, is called an admis- 
sible velocity. The points of the DFM at which the topological type of the set of admissible 
velocities is changed fthe critical values of the projection mentioned> form the generalized 
boundary of the DFM. The generalized boundary contains within itself the topological bound- 
ary. We pose the problem of classifying the types of DFM with due regard to the generalized 
boundaries. 

2. Let us briefly outline the situation obtaining in systems with symmetry (see /2/ for 
the details). We consider a natural mechanical system with a configuration space M. It is 
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specified by a Riemann metric on M (by *-he scalar product l.), in the tangent space:; t_.~ Jl. 
depending smoothly on point ZE M) and by a function 1' on hf. The Lagrange function of such 
a system L (u) = 'I, (u, u), - V(t) (vis a vector tangent to M at point I) has the form !l.l) in 
local coordinates, and all bi (q)=_ 0. Let a one-parameter diffeomorphism group {;r) ,+ct try 
ely on M, preserving the function V and the scalar product. Then in addition to the enercly 
integral 

H (v) ss ‘i, <v, u), + V (I) =: h i2.l) 

the system admits of an integral 

/ (u) az <IA. u) TY s (?.?) 

linear in the velocities (k and s are constants, n(z) = (d/dr),_&(z) is a nonzero vector field 

generating the group's action). For fixed 2~ M,sER the set J-'(S) is a hyperplane in the 
space of tangent vectors to manifold M at point z. We define a vector field u'(z) such that 

u' (z) E I-' (s) and u' (t)I 1-l (0) in the Riemann metric prescribed. The function VS (I) : V (2) -:- 

'12 <u'* U3X is called the reduced potential. 

In this problem the DFM have the form nfh,$ = (z E M : V,(t)< h}. obviously, a change in 

the type of M,,,% is possible only when k passes through the critical value V,. The latter 
signifies, however, that (h, s) intersects the bifurcation set of integrals (2.11, (2.2) /l/. 
Thus, reorganizations of the DFM are possible only on the bifurcation set. 

3. Let us consider a system with two degrees of freedom, of Liouville type. In suitable 

coordinates (I, y) the Lagrange function of such a system is 

Once more this is a function of form (1.1) with bi (9)s 0. The system admits of two quadratic 

first integrals 

V:(T) +$(I) H EE +(((/ T V)(cQ" c ,Yy") i_ _= 
USC 

k 0.1) 

A e +(u + Q(VcZr"._ L!fily") i_ w 7: k 

From these we find 

'/, (u + V)32&'* = hu +k -. CF. '!?(u A V)‘fJ2y’*=hV -k -- $ 

so that the corresponding DFM is determined by the inequalities 

Mh,L={(z,y):hU(z) +k--(z)>U. hV(y)--k--rlj(~)d~()j 

It is obvious that a reorganization of Mh,k is possible only when there is a critical point 

of one of the functions hCJ + k -_9: or hV - k -I$ on the boundary of M,,.k. Let us show that 

the point (h,k) belongs to the bifurcation set of integrals (3.1). For example, letthepoint 

(t. y) be such that 

hCI (z) + k - cp (r) = 0, hV (Y) - k - $ (Y) = 0, hV’ (y) - q’ (y) = 0 

We set E' = y’ = 0. By virtue of (3.2) 

H (2, y* 0, 0) = h, K (2, y, 0, 0) T-- k 

In addition, the partial derivatives of functions Hand K at such a point are 

H,. = HI,. = 0, K,. = K,. = 0, H, : K, -- 0 

(3.2) 

(3.3) 

H,=- + (hU’ - cp’), K, = - + (hl” - cp’) 

In particular 

grad H - V (Y) ~(1 K (cr. y.o.u, = o 

Thus, at the point being examined the integrals (3.1) are dependent, but then,onthestrength 

of (3.31, (h. k)E Z. Consequently, here too reorganizations of the DFM can obtain only on 

the bifurcation set. An elementary case has been considered above. Liouville systems of 

arbitrary dimension have been studied in /3/. Concrete examples of two-dimensional systems 

have been investigated in detail in /3,4,/. 
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4. Let us dwell on the problem of the motion of a asymmetric rigid body, fixed at the 
center of mass, in a Newtonian force field. The results extend the investigations in /5/.All 

notation is consistent with the latter paper. A lowering of the order with the aid ofanarea 

integral (whose constant is henceforth denoted by S) leads to a mechanical system on the 

Poisson sphere 

VIZ + v2= + v3* = 1 (4.11 

(vi are components in the moving trihedron of the direction vector of "the center of mass- 
center of attraction" axis). When s#O the system is not natural, i.e., the Lagrangian (the 
Routh function) of form (1.1) in the local coordinates on sphere (4.1) contains in essential 
manner summands linear in the generalized velocities. By cz >b > c we denote quantities in- 

(4. 1) we introducethe verse to the principal central energy moments of the body and on sphere 
local coordinates R,p 

q= @--@(a-P) 
(a - b) (a - c) ’ 

q= (A---blfb-PIr) 
(a - b) (b -c) ’ 

Q = @ - 6 (P - 4 
(a - c) (b - c) 

The first integrals of the reduced system take the form /5/ 

(4.2) 

up J/ --# P’) f G [PC + ca + a@ AP - abc (a f &I+ 

-$-[h+p-(a+bfc)]=Jc, f(r)=@--r)(b--T)(c--t) 

Their bifurcation set is shown on Fig.1 for small values of a. In regions lo and 2' the in- 
tegral manifolds 1 h,& consist of two nonintersgcting two-dimensional tori not supporting cog- 
ditionally-periodic motions, while in region 3 it consists of four such tori. In region 4 , 

1h.k =(zI i51. In this problem let us investigate the DFM, i.e., the domains on sphere (4.1), 
swept by a unit vector fixed in space. 

We rewrite (4.2) as 

~2 + va = (2hlJl - VF~- abc.9) I (h - p) (4.3) 

(4.41 

Thus, the set of admissible velocities at point (h, P) is the set of points of intersection of 
circle (4.3) and ellipse (4.4). Obviously, point (h, p) belongs to the generalized boundaryof 
a DFM if and only if the corresponding curves (4.3) and (4.4) have at least one point of tang- 
ency. Writing the proportionality condition for the gradients with respect to ZI and v, we 
find that at the point of tangency 

ST v- if w 
u = (A - p) (T - p) ’ 

ST1/PfW 
u = 0. - II) (h -- 7) (4.5) 

(t isthegradients proportionality coefficient). We denote 

5 = (h - r)(r - II), y = (h - 7) - {r - ii) (4.6) 

The substitution of (4.5) into (4.3) and (4.4) leads to the equations 

I‘d f I2h - (2k + a + b $- c) z + t’J] .Z $- s*f (T) = 0 , y = r (" -l-a + ",:: $";ri z - SzY tT) (4.7) 

from which the functions s(z),z~(r) are determined. Finally, from (4.6) we find the equation 
of the generalized boundary 

(4.8) 

We note that system (4.31, (4.4) is completely analytically solvable at the pointsoftheDFM's 
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generalized boundary and we can show that solution (4.5) is unique if z<O. Under the con- 
dition t>O the ellipse and the circle have two more points of intersection. We present the 
investigation's result without dwelling on the quite cumbersome analysis of Eqs.(4.7) and (4.8) 
(in particular, on the study of the singular case r = 0 when the appearance of extraneous 
solutions is possible). 

Ih 

I k 

Fig.1 e 

Fig.2 Fig.3 

Fig.2 shows fivebasictypes of DFM arising on sphere (4.1). The numbers denote the number 
of admissible velocities at the corresponding points of the DFM or of its generalized bound- 

ary. At the cusps and the selfintersection points of the generalized boundary wehavetwoad- 
missible velocties. It is easy to understand how these cases are obtainedunderthcprojection 
of the integral torus onto sphere (4.1) and to see how the images of the conditionally- 
periodic trajectories on the torus are constructed. In regions lo and 2O (see Fig.11 the DFM 

consists of two components of the kind indicated, while in region 3O, of four such components. 
In this connection, their partial or complete mutual overlappings are possible. Anexhaustive 
description of all situations is not possible within the scope of the presenk paper. Wemerely 
present an example of one of the most complex situations relating to region 3 (Fig.3). Curves 
1 and 4 bound a domain of type 2,e; curves 2 and 3, a domain of type 2,a. The DFM is sym- 
metric relative to a section of the sphere by the plane v1 = 0 (consequently, curve 5 is anal- 
ogous to curve 4). 

We stress that all the situations shown in Fig.2 result form a prescribed area constant 
in each of regions 1o-3o into which the bifurcation set divides the plane of constantsofthe 
integrals. Thus, in the problem at hand the DFM undergo reorganizations at the places where 
the corresponding integral manifolds do not change their differentiable type. 
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